neuro_dot.Light_Modeling#

Module Contents#

Functions#

calc_NN(info_in, dr)

CALC_NN Calculates the Nearest Neigbor value for all measurement pairs.

Generate_pad_from_grid(grid, params, info)

GENERATE_PAD_FROM_GRID Generates info structures "optodes" and "pairs" from a given "grid".

makeFlatFieldRecon(A, iA)

MAKEFLATFIELDRECON Generates the flat field reconstruction of a given "A" sensitivity matrix.

neuro_dot.Light_Modeling.calc_NN(info_in, dr)#

CALC_NN Calculates the Nearest Neigbor value for all measurement pairs.

Inputs:
info_in:

info structure containing data measurement list

dr:

minimum separation for sources and detectors to be grouped into. (default = 10 mm) NOTE: distances are in millimeters

Outputs:
info_out:

info structure containing updated data measurement list with “info.pairs.NN”

neuro_dot.Light_Modeling.Generate_pad_from_grid(grid, params, info)#

GENERATE_PAD_FROM_GRID Generates info structures “optodes” and “pairs” from a given “grid”.

The input: “grid” must have fields that list the spatial locations of sources and detectors in 3D: spos3, dpos3.

The input: “params” can be used to pass in mod type (default is ‘CW’ but can be the modulation frequency if fd) and wavelength(s) of the data in field ‘lambda’.

Params:
dr:

Minimum separation for sources and detectors to be grouped into different neighbors.

lambda:

Wavelengths of the light. Any number of comma-separated values is allowed. Default: [750,850].

Mod:

Modulation type or frequency. Can be ‘CW or ‘FD’ or can be the actual modulation frequency (e.g., 0 or 200) in MHz.

pos2:

Flag which determines NN classification. Defaults to 0, where 3D coordinates are used. If set to 1, 2D coordinates will be used for NN classification.

CapName:

Name for your pad file.

neuro_dot.Light_Modeling.makeFlatFieldRecon(A, iA)#

MAKEFLATFIELDRECON Generates the flat field reconstruction of a given “A” sensitivity matrix.

Inputs:
A:

“A” sensitivity matrix

iA:

inverted “A” sensitivity matrix

Outputs:
Asens:

flat field reconstruction of a given “A” sensitivity matrix